1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
pub use euclid::Rect;
use rustc_hash::FxHashMap;
use crate::{
custom_measurer::LayoutMeasurer,
dom_adapter::{
DOMAdapter,
LayoutNode,
NodeKey,
},
geometry::{
Area,
Size2D,
},
node::Node,
prelude::{
AlignAxis,
Alignment,
AlignmentDirection,
AreaModel,
DirectionMode,
LayoutMetadata,
Torin,
},
};
/// Some layout strategies require two-phase measurements
/// Example: Alignments or content-fit.
#[derive(Clone, Copy, PartialEq)]
pub enum Phase {
Initial,
Final,
}
pub struct MeasureContext<'a, Key, L, D>
where
Key: NodeKey,
L: LayoutMeasurer<Key>,
D: DOMAdapter<Key>,
{
pub layout: &'a mut Torin<Key>,
pub measurer: &'a mut Option<L>,
pub dom_adapter: &'a mut D,
pub layout_metadata: LayoutMetadata,
}
impl<Key, L, D> MeasureContext<'_, Key, L, D>
where
Key: NodeKey,
L: LayoutMeasurer<Key>,
D: DOMAdapter<Key>,
{
/// Measure a Node.
#[allow(clippy::too_many_arguments)]
#[inline(always)]
pub fn measure_node(
&mut self,
// ID for this Node
node_id: Key,
// Data of this Node
node: &Node,
// Area occupied by it's parent
parent_area: &Area,
// Area that is available to use by the children of the parent
available_parent_area: &Area,
// Whether to cache the measurements of this Node's children
must_cache_children: bool,
// Parent Node is dirty.
parent_is_dirty: bool,
// Current phase of measurement
phase: Phase,
) -> (bool, LayoutNode) {
// 1. If parent is dirty
// 2. If this Node has been marked as dirty
// 3. If there is no know cached data about this Node.
let must_revalidate = parent_is_dirty
|| self.layout.dirty.contains(&node_id)
|| !self.layout.results.contains_key(&node_id);
if must_revalidate {
// Create the initial Node area size
let mut area_size = Size2D::new(node.padding.horizontal(), node.padding.vertical());
// Compute the width and height given the size, the minimum size, the maximum size and margins
area_size.width = node.width.min_max(
area_size.width,
parent_area.size.width,
available_parent_area.size.width,
node.margin.left(),
node.margin.horizontal(),
&node.minimum_width,
&node.maximum_width,
self.layout_metadata.root_area.width(),
phase,
);
area_size.height = node.height.min_max(
area_size.height,
parent_area.size.height,
available_parent_area.size.height,
node.margin.top(),
node.margin.vertical(),
&node.minimum_height,
&node.maximum_height,
self.layout_metadata.root_area.height(),
phase,
);
// If available, run a custom layout measure function
// This is useful when you use third-party libraries (e.g. rust-skia, cosmic-text) to measure text layouts
// When a Node is measured by a custom measurer function the inner children will be skipped
let (measure_inner_children, node_data) = if let Some(measurer) = self.measurer {
let most_fitting_width = *node
.width
.most_fitting_size(&area_size.width, &available_parent_area.size.width);
let most_fitting_height = *node
.height
.most_fitting_size(&area_size.height, &available_parent_area.size.height);
let most_fitting_area_size = Size2D::new(most_fitting_width, most_fitting_height);
let res = measurer.measure(node_id, node, &most_fitting_area_size);
// Compute the width and height again using the new custom area sizes
if let Some((custom_size, node_data)) = res {
if node.width.inner_sized() {
area_size.width = node.width.min_max(
custom_size.width,
parent_area.size.width,
available_parent_area.size.width,
node.margin.left(),
node.margin.horizontal(),
&node.minimum_width,
&node.maximum_width,
self.layout_metadata.root_area.width(),
phase,
);
}
if node.height.inner_sized() {
area_size.height = node.height.min_max(
custom_size.height,
parent_area.size.height,
available_parent_area.size.height,
node.margin.top(),
node.margin.vertical(),
&node.minimum_height,
&node.maximum_height,
self.layout_metadata.root_area.height(),
phase,
);
}
// Do not measure inner children
(false, Some(node_data))
} else {
(true, None)
}
} else {
(true, None)
};
// There is no need to measure inner children in the initial phase if this Node size
// isn't decided by his children
let phase_measure_inner_children = if phase == Phase::Initial {
node.width.inner_sized() || node.height.inner_sized()
} else {
true
};
// Compute the inner size of the Node, which is basically the size inside the margins and paddings
let inner_size = {
let mut inner_size = area_size;
// When having an unsized bound we set it to whatever is still available in the parent's area
if node.width.inner_sized() {
inner_size.width = node.width.min_max(
available_parent_area.width(),
parent_area.size.width,
available_parent_area.width(),
node.margin.left(),
node.margin.horizontal(),
&node.minimum_width,
&node.maximum_width,
self.layout_metadata.root_area.width(),
phase,
);
}
if node.height.inner_sized() {
inner_size.height = node.height.min_max(
available_parent_area.height(),
parent_area.size.height,
available_parent_area.height(),
node.margin.top(),
node.margin.vertical(),
&node.minimum_height,
&node.maximum_height,
self.layout_metadata.root_area.height(),
phase,
);
}
inner_size
};
// Create the areas
let area_origin =
node.position
.get_origin(available_parent_area, parent_area, &area_size);
let mut area = Rect::new(area_origin, area_size);
let mut inner_area = Rect::new(area_origin, inner_size)
.without_gaps(&node.padding)
.without_gaps(&node.margin);
let mut inner_sizes = Size2D::default();
if measure_inner_children && phase_measure_inner_children {
// Create an area containing the available space inside the inner area
let mut available_area = inner_area;
available_area.move_with_offsets(&node.offset_x, &node.offset_y);
// Measure the layout of this Node's children
self.measure_children(
&node_id,
node,
&mut available_area,
&mut inner_sizes,
must_cache_children,
&mut area,
&mut inner_area,
true,
);
}
inner_sizes.width += node.padding.horizontal();
inner_sizes.height += node.padding.vertical();
(
must_cache_children,
LayoutNode {
area,
margin: node.margin,
inner_area,
inner_sizes,
data: node_data,
},
)
} else {
let layout_node = self.layout.get(node_id).unwrap().clone();
let mut inner_sizes = Size2D::default();
let mut available_area = layout_node.inner_area;
let mut area = layout_node.area;
let mut inner_area = layout_node.inner_area;
available_area.move_with_offsets(&node.offset_x, &node.offset_y);
let measure_inner_children = if let Some(measurer) = self.measurer {
measurer.should_measure_inner_children(node_id)
} else {
true
};
if measure_inner_children {
self.measure_children(
&node_id,
node,
&mut available_area,
&mut inner_sizes,
must_cache_children,
&mut area,
&mut inner_area,
false,
);
}
(false, layout_node)
}
}
/// Measure the children layouts of a Node
#[allow(clippy::too_many_arguments)]
#[inline(always)]
pub fn measure_children(
&mut self,
parent_node_id: &Key,
parent_node: &Node,
// Area available inside the Node
available_area: &mut Area,
// Accumulated sizes in both axis in the Node
inner_sizes: &mut Size2D,
// Whether to cache the measurements of this Node's children
must_cache_children: bool,
// Parent area.
area: &mut Area,
// Inner area of the parent.
inner_area: &mut Area,
// Parent Node is dirty.
parent_is_dirty: bool,
) {
let children = self.dom_adapter.children_of(parent_node_id);
let mut initial_phase_sizes = FxHashMap::default();
let mut initial_phase_inner_sizes = *inner_sizes;
// Used to calculate the spacing and some alignments
let (non_absolute_children_len, first_child, last_child) = if parent_node.spacing.get() > 0.
{
let mut last_child = None;
let mut first_child = None;
let len = children
.iter()
.filter(|child_id| {
let Some(child_data) = self.dom_adapter.get_node(child_id) else {
return false;
};
let is_stacked = !child_data.position.is_absolute();
if is_stacked {
last_child = Some(**child_id);
if first_child.is_none() {
first_child = Some(**child_id)
}
}
is_stacked
})
.count();
(len, first_child, last_child)
} else {
(
children.len(),
children.first().cloned(),
children.last().cloned(),
)
};
// Initial phase: Measure the size and position of the children if the parent has a
// non-start cross alignment, non-start main aligment of a fit-content.
if parent_node.cross_alignment.is_not_start()
|| parent_node.main_alignment.is_not_start()
|| parent_node.content.is_fit()
{
let mut initial_phase_area = *area;
let mut initial_phase_inner_area = *inner_area;
let mut initial_phase_available_area = *available_area;
// Measure the children
for child_id in children.iter() {
let Some(child_data) = self.dom_adapter.get_node(child_id) else {
continue;
};
// No need to consider this Node for a two-phasing
// measurements as it will float on its own.
if child_data.position.is_absolute() {
continue;
}
let is_last_child = last_child == Some(*child_id);
let inner_area = initial_phase_inner_area;
let (_, child_areas) = self.measure_node(
*child_id,
&child_data,
&inner_area,
&initial_phase_available_area,
false,
parent_is_dirty,
Phase::Initial,
);
// Stack this child into the parent
Self::stack_child(
&mut initial_phase_available_area,
parent_node,
&mut initial_phase_area,
&mut initial_phase_inner_area,
&mut initial_phase_inner_sizes,
&child_areas.area,
is_last_child,
);
if parent_node.cross_alignment.is_not_start()
|| parent_node.main_alignment.is_spaced()
{
initial_phase_sizes.insert(*child_id, child_areas.area.size);
}
}
if parent_node.main_alignment.is_not_start() {
// Adjust the available and inner areas of the Main axis
Self::shrink_area_to_fit_when_unbounded(
available_area,
&initial_phase_area,
&mut initial_phase_inner_area,
parent_node,
AlignmentDirection::Main,
);
// Align the Main axis
Self::align_content(
available_area,
&initial_phase_inner_area,
&initial_phase_inner_sizes,
&parent_node.main_alignment,
&parent_node.direction,
AlignmentDirection::Main,
);
}
if parent_node.cross_alignment.is_not_start() || parent_node.content.is_fit() {
// Adjust the available and inner areas of the Cross axis
Self::shrink_area_to_fit_when_unbounded(
available_area,
&initial_phase_area,
&mut initial_phase_inner_area,
parent_node,
AlignmentDirection::Cross,
);
}
}
let initial_available_area = *available_area;
// Final phase: measure the children with all the axis and sizes adjusted
for child_id in children {
let Some(child_data) = self.dom_adapter.get_node(&child_id) else {
continue;
};
let is_first_child = first_child == Some(child_id);
let is_last_child = last_child == Some(child_id);
let mut adapted_available_area = *available_area;
// Only the stacked children will be aligned
if parent_node.main_alignment.is_spaced() && !child_data.position.is_absolute() {
// Align the Main axis if necessary
Self::align_position(
AlignmentDirection::Main,
&mut adapted_available_area,
&initial_available_area,
&initial_phase_inner_sizes,
&parent_node.main_alignment,
&parent_node.direction,
non_absolute_children_len,
is_first_child,
);
}
if parent_node.cross_alignment.is_not_start() {
let initial_phase_size = initial_phase_sizes.get(&child_id);
if let Some(initial_phase_size) = initial_phase_size {
// Align the Cross axis if necessary
Self::align_content(
&mut adapted_available_area,
available_area,
initial_phase_size,
&parent_node.cross_alignment,
&parent_node.direction,
AlignmentDirection::Cross,
);
}
}
// Final measurement
let (child_revalidated, mut child_areas) = self.measure_node(
child_id,
&child_data,
inner_area,
&adapted_available_area,
must_cache_children,
parent_is_dirty,
Phase::Final,
);
// Adjust the size of the area if needed
child_areas.area.adjust_size(&child_data);
// Stack this child into the parent
if !child_data.position.is_absolute() {
Self::stack_child(
available_area,
parent_node,
area,
inner_area,
inner_sizes,
&child_areas.area,
is_last_child,
);
}
// Cache the child layout if it was mutated and children must be cached
if child_revalidated && must_cache_children {
// In case of any layout listener, notify it with the new areas.
if child_data.has_layout_references {
if let Some(measurer) = self.measurer {
measurer.notify_layout_references(child_id, &child_areas);
}
}
// Finally cache this node areas into Torin
self.layout.cache_node(child_id, child_areas);
}
}
}
/// Align the content of this node.
fn align_content(
available_area: &mut Area,
inner_area: &Area,
contents_size: &Size2D,
alignment: &Alignment,
direction: &DirectionMode,
alignment_direction: AlignmentDirection,
) {
let axis = AlignAxis::new(direction, alignment_direction);
match axis {
AlignAxis::Height => match alignment {
Alignment::Center => {
let new_origin_y = (inner_area.height() / 2.0) - (contents_size.height / 2.0);
available_area.origin.y = inner_area.min_y() + new_origin_y;
}
Alignment::End => {
available_area.origin.y = inner_area.max_y() - contents_size.height;
}
_ => {}
},
AlignAxis::Width => match alignment {
Alignment::Center => {
let new_origin_x = (inner_area.width() / 2.0) - (contents_size.width / 2.0);
available_area.origin.x = inner_area.min_x() + new_origin_x;
}
Alignment::End => {
available_area.origin.x = inner_area.max_x() - contents_size.width;
}
_ => {}
},
}
}
/// Align the position of this node.
#[allow(clippy::too_many_arguments)]
fn align_position(
alignment_direction: AlignmentDirection,
available_area: &mut Area,
initial_available_area: &Area,
inner_sizes: &Size2D,
alignment: &Alignment,
direction: &DirectionMode,
siblings_len: usize,
is_first_sibling: bool,
) {
let axis = AlignAxis::new(direction, alignment_direction);
match axis {
AlignAxis::Height => match alignment {
Alignment::SpaceBetween if !is_first_sibling => {
let all_gaps_sizes = initial_available_area.height() - inner_sizes.height;
let gap_size = all_gaps_sizes / (siblings_len - 1) as f32;
available_area.origin.y += gap_size;
}
Alignment::SpaceEvenly => {
let all_gaps_sizes = initial_available_area.height() - inner_sizes.height;
let gap_size = all_gaps_sizes / (siblings_len + 1) as f32;
available_area.origin.y += gap_size;
}
Alignment::SpaceAround => {
let all_gaps_sizes = initial_available_area.height() - inner_sizes.height;
let one_gap_size = all_gaps_sizes / siblings_len as f32;
let gap_size = if is_first_sibling {
one_gap_size / 2.
} else {
one_gap_size
};
available_area.origin.y += gap_size;
}
_ => {}
},
AlignAxis::Width => match alignment {
Alignment::SpaceBetween if !is_first_sibling => {
let all_gaps_sizes = initial_available_area.width() - inner_sizes.width;
let gap_size = all_gaps_sizes / (siblings_len - 1) as f32;
available_area.origin.x += gap_size;
}
Alignment::SpaceEvenly => {
let all_gaps_sizes = initial_available_area.width() - inner_sizes.width;
let gap_size = all_gaps_sizes / (siblings_len + 1) as f32;
available_area.origin.x += gap_size;
}
Alignment::SpaceAround => {
let all_gaps_sizes = initial_available_area.width() - inner_sizes.width;
let one_gap_size = all_gaps_sizes / siblings_len as f32;
let gap_size = if is_first_sibling {
one_gap_size / 2.
} else {
one_gap_size
};
available_area.origin.x += gap_size;
}
_ => {}
},
}
}
/// Stack a child Node into its parent
#[allow(clippy::too_many_arguments)]
fn stack_child(
available_area: &mut Area,
parent_node: &Node,
parent_area: &mut Area,
inner_area: &mut Area,
inner_sizes: &mut Size2D,
child_area: &Area,
is_last_sibiling: bool,
) {
// Only apply the spacing to elements after `i > 0` and `i < len - 1`
let spacing = (!is_last_sibiling)
.then_some(parent_node.spacing)
.unwrap_or_default();
match parent_node.direction {
DirectionMode::Horizontal => {
// Move the available area
available_area.origin.x = child_area.max_x() + spacing.get();
available_area.size.width -= child_area.size.width + spacing.get();
inner_sizes.height = child_area.height().max(inner_sizes.height);
inner_sizes.width += child_area.width() + spacing.get();
// Keep the biggest height
if parent_node.height.inner_sized() {
parent_area.size.height = parent_area.size.height.max(
child_area.size.height
+ parent_node.padding.vertical()
+ parent_node.margin.vertical(),
);
// Keep the inner area in sync
inner_area.size.height = parent_area.size.height
- parent_node.padding.vertical()
- parent_node.margin.vertical();
}
// Accumulate width
if parent_node.width.inner_sized() {
parent_area.size.width += child_area.size.width + spacing.get();
}
}
DirectionMode::Vertical => {
// Move the available area
available_area.origin.y = child_area.max_y() + spacing.get();
available_area.size.height -= child_area.size.height + spacing.get();
inner_sizes.width = child_area.width().max(inner_sizes.width);
inner_sizes.height += child_area.height() + spacing.get();
// Keep the biggest width
if parent_node.width.inner_sized() {
parent_area.size.width = parent_area.size.width.max(
child_area.size.width
+ parent_node.padding.horizontal()
+ parent_node.margin.horizontal(),
);
// Keep the inner area in sync
inner_area.size.width = parent_area.size.width
- parent_node.padding.horizontal()
- parent_node.margin.horizontal();
}
// Accumulate height
if parent_node.height.inner_sized() {
parent_area.size.height += child_area.size.height + spacing.get();
}
}
}
}
/// Shrink the available area and inner area of a parent node when for example height is set to "auto",
/// direction is vertical and main_alignment is set to "center" or "end" or the content is set to "fit".
/// The intended usage is to call this after the first measurement and before the second,
/// this way the second measurement will align the content relatively to the parent element instead
/// of overflowing due to being aligned relatively to the upper parent element
fn shrink_area_to_fit_when_unbounded(
available_area: &mut Area,
parent_area: &Area,
inner_area: &mut Area,
parent_node: &Node,
alignment_direction: AlignmentDirection,
) {
struct NodeData<'a> {
pub inner_origin: &'a mut f32,
pub inner_size: &'a mut f32,
pub area_origin: f32,
pub area_size: f32,
pub one_side_padding: f32,
pub two_sides_padding: f32,
pub one_side_margin: f32,
pub two_sides_margin: f32,
pub available_size: &'a mut f32,
}
let axis = AlignAxis::new(&parent_node.direction, alignment_direction);
let (is_vertical_not_start, is_horizontal_not_start) = match parent_node.direction {
DirectionMode::Vertical => (
parent_node.main_alignment.is_not_start(),
parent_node.cross_alignment.is_not_start() || parent_node.content.is_fit(),
),
DirectionMode::Horizontal => (
parent_node.cross_alignment.is_not_start() || parent_node.content.is_fit(),
parent_node.main_alignment.is_not_start(),
),
};
let NodeData {
inner_origin,
inner_size,
area_origin,
area_size,
one_side_padding,
two_sides_padding,
one_side_margin,
two_sides_margin,
available_size,
} = match axis {
AlignAxis::Height if parent_node.height.inner_sized() && is_vertical_not_start => {
NodeData {
inner_origin: &mut inner_area.origin.y,
inner_size: &mut inner_area.size.height,
area_origin: parent_area.origin.y,
area_size: parent_area.size.height,
one_side_padding: parent_node.padding.top(),
two_sides_padding: parent_node.padding.vertical(),
one_side_margin: parent_node.margin.top(),
two_sides_margin: parent_node.margin.vertical(),
available_size: &mut available_area.size.height,
}
}
AlignAxis::Width if parent_node.width.inner_sized() && is_horizontal_not_start => {
NodeData {
inner_origin: &mut inner_area.origin.x,
inner_size: &mut inner_area.size.width,
area_origin: parent_area.origin.x,
area_size: parent_area.size.width,
one_side_padding: parent_node.padding.left(),
two_sides_padding: parent_node.padding.horizontal(),
one_side_margin: parent_node.margin.left(),
two_sides_margin: parent_node.margin.horizontal(),
available_size: &mut available_area.size.width,
}
}
_ => return,
};
// Set the origin of the inner area to the origin of the area plus the padding and margin for the given axis
*inner_origin = area_origin + one_side_padding + one_side_margin;
// Set the size of the inner area to the size of the area minus the padding and margin for the given axis
*inner_size = area_size - two_sides_padding - two_sides_margin;
// Set the same available size as the inner area for the given axis
*available_size = *inner_size;
}
}